Back to schoolтАФsafely
Severe COVID-19 in children is rare, but many schools remain closed because the transmission risk that school contact poses to adults and the wider community is unknown. Observing the heterogeneity of approaches taken among U.S. school districts, Lessler et al. investigated how different strategies influence COVID-19 transmission rates in the wider community using COVID-19 Symptom Survey data from Carnegie Mellon and Facebook. The authors found that when mitigation measures are in place, transmission within schools is limited and infection rates mirror that of the surrounding community.
Science, abh2939, this issue p. 1092
Abstract
In-person schooling has proved contentious and difficult to study throughout the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Data from a massive online survey in the United States indicate an increased risk of COVID-19тАУrelated outcomes among respondents living with a child attending school in person. School-based mitigation measures are associated with significant reductions in risk, particularly daily symptoms screens, teacher masking, and closure of extracurricular activities. A positive association between in-person schooling and COVID-19 outcomes persists at low levels of mitigation, but when seven or more mitigation measures are reported, a significant relationship is no longer observed. Among teachers, working outside the home was associated with an increase in COVID-19тАУrelated outcomes, but this association is similar to that observed in other occupations (e.g., health care or office work). Although in-person schooling is associated with household COVID-19 risk, this risk can likely be controlled with properly implemented school-based mitigation measures.
The role of schools in transmissionтАФand the value of school closureтАФhas been one of the most contentious issues of the COVID-19 pandemic. There is ongoing debate about exactly how much severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) risk is posed to individuals and communities by in-person schooling. Although there is general consensus that it should be possible to open schools safely with adequate mitigation measures, there are few data and even less agreement as to what level of mitigation is needed.
Many ecological studies have shown an association between in-person schooling and the speed and extent of community SARS-CoV-2 transmission (1тАУ3), though these results have not been uniform (4). Although there have been numerous outbreaks in schools and school-like settings (5тАУ7), studies outside of outbreak settings have suggested that, when mitigation measures are in place, transmission within schools is limited and infection rates mirror those of the surrounding community (8, 9).
However, the ways in which in-person schooling influences community SARS-CoV-2 incidence are complex. Schools play a distinct role in the social fabric of the US and other countries and often create potential transmission connections between otherwise disparate communities. Even if transmission in classrooms is rare, activities surrounding in-person schooling, such as student pickup and drop-off, teacher interactions, and broader changes to behavior when school is in session, could lead to increases in community transmission.
There is also a growing body of evidence that younger children (e.g., those under 10 years of age) are less susceptible to infection when exposed (10); however, it is unclear whether they are less likely to pass on the virus once infected (11, 12) or whether this reduced susceptibility is offset by increases in number of contacts during school (13). Even when school-aged children are infected, their risk of severe disease and death is low (14). This means that one of the main reasons for a focus on schools is not the risk to students, but the risk that in-person schooling poses to teachers and family members (15) and its impact on the overall epidemic. Yet, few studies have focused on the risk that in-person school poses to household members (15).
Different interpretations of the evidence and local politics have led to massive heterogeneity in approaches to schooling across the US during the 2020 to 2021 school year (16)тАФrunning the gambit from complete cessation of in-person learning to opening completely with no mitigation measures. Most schools that have opened have made some efforts to mitigate transmission, but there is much diversity in the approaches adopted.
This hodgepodge of approaches to schooling creates a natural experiment from which we can learn about what does and what does not work for controlling school-associated SARS-CoV-2 spread. However, there is no central repository of the measures implemented across the >130,000 schools in the US or the health outcomes in these schools. Where data are available, they are often restricted to traditional public-school systemsтАФthough 28% of prekindergarten (pre-K) through 12th-grade students are in private or charter schoolsтАФand rarely can data be linked with individual- or household-level outcomes.
The COVID-19 Symptom Survey provides an opportunity to collect and analyze data on schooling behaviors and SARS-CoV-2тАУrelated outcomes from households throughout the US. This survey is administered through Facebook in partnership with Carnegie Mellon University and yields ~500,000 survey responses in the US weekly (17). It includes questions on symptoms related to COVID-19, testing, and, since late November 2020, the schooling experience of any children in the household [survey details and questionnaires are available at (18)]. Analysis weights adjust for nonresponse and coverage bias (see materials and methods).
We analyzed data collected over two time periods during the 2020 to 2021 school year (24 November 2020 to 23 December 2020 and 11 January 2021 to 10 February 2021). Of 2,142,887 total respondents in the 50 US states and Washington, DC, during this period, 576,051 (26.9%) reported at least one child in pre-K through high school living in their household (tables S1 and S2, Fig. 1A, and fig. S1). Although larger states have more responses, the per-capita response rate was fairly consistent across states (20 per 100,000; range, 10 to 29 per 100,000) and slightly higher in smaller states (fig. S2). Forty-nine percent (284,789 of 576,051) of these respondents reported a child living in the household engaged in either full- (68.8%) or part-time (46.0%) in-person schooling, with substantial variation both within and between states (Fig. 1 and table S3). Overall, in-person schooling increased between the two periods from 48 to 52%, although decreases were observed in some states (e.g., Arizona) (fig. S1 and table S3). Previous work has shown that household-reported rates of in-person schooling collected through the COVID-19 Symptom Survey track well with administrative data (19).
(A) Number of survey respondents reporting a school-aged student in the household by county. (B) Percentage of households with school-aged children reporting any in-person schooling by county, excluding counties with fewer than 10 responses (excluded counties are shown in dark gray). (C) Percentage of households reporting a child in in-person schooling who report full-time in-person schooling, excluding counties with fewer than 10 reporting in-person schooling. (D) Average number of school-based mitigation measures reported for children with in-person schooling, excluding counties with fewer than 10 reporting in-person schooling.
After adjusting for county-level incidence and other individual- and county-level factors (but not school-based mitigation measures; tables S1 and S2 and fig. S3), living in a household with a child engaged in full-time in-person schooling is associated with a substantial increase in the odds [adjusted odds ratio (aOR), 1.38; 95% confidence interval (CI), 1.30 to 1.47] of reporting COVID-19тАУlike illness [(CLI), defined as a fever of at least 100┬░F, along with cough, shortness of breath, or difficulty breathing], loss of taste or smell (aOR, 1.21; 95% CI, 1.16 to 1.27), or a positive SARS-CoV-2 test result within the previous 14 days (aOR, 1.30; 95% CI, 1.24 to 1.35) (Fig. 2A and table S4). Rates of reported COVID-19 outcomes were positively correlated with county-level confirmed SARS-CoV-2 incidence (figs. S4 and S5). When stratifying by grade level (restricted to households reporting children in a single grade strata), we find that the strength of the associations with full-time schooling increases with grade (Fig. 2A and table S4).
(A) Odds ratio of COVID-19тАУrelated outcomes associated with full- and part-time in-person schooling by outcome and grade level compared with individuals with children in their household not attending in-person schooling and adjusted for individual- and county-level covariates (but not number of mitigation measures), which indicates that the strength of the association increases with grade level. K, kindergarten. (B) Distribution of mitigation measures by grade level and full- versus part-time in-person status across all grades. Test+, positive SARS-CoV-2 test result.
The association between COVID-19 outcomes and reporting a child in the household engaged in part-time in-person schooling is attenuated but still statistically significant for CLI (aOR, 1.21; 95% CI, 1.13 to 1.29), loss of taste or smell (aOR, 1.18; 95% CI, 1.13 to 1.24), and reporting a positive test (aOR, 1.09; 95% CI, 1.03 to 1.14). Among those reporting part-time schooling, the association between grade and COVID-19тАУrelated outcomes is less clear (Fig. 2A and table S4).
Respondents were asked to select all mitigation measures in place for any household child engaged in in-person schooling from a list of 14 measures (see materials and methods for wording). For students engaged in any form of in-person learning, the most common mitigation measure reported was student mask mandates (88%, unweighted), followed by teacher mask mandates (80%), restricted entry (e.g., no parents or caregivers allowed into school) (66%), and extra space between desks (63%) (see table S5 for survey-weighted rates). The distribution of mitigation measures reported was similar between those reporting full- and part-time in-person schooling, though most measures were slightly more likely to be reported in the part-time setting (Fig. 2B). Besides staying with the same teacher and staying with the same students throughout the day, we found minimal evidence of clustering of mitigation measures in principal components (table S6) or hierarchical clustering analyses (fig. S6). Student mask mandates were the only intervention reported alone.
Overall, respondents reporting a household child engaged in in-person school reported a mean of 6.7 [interquartile range (IQR), 4 to 9] mitigation measures in place at any school attended. Those reporting only children in part-time schooling reported more mitigation measures (mean, 7.0; IQR, 5 to 10) than those reporting only children in full-time schooling (mean, 6.4; IQR, 4 to 9). There is substantial geographic heterogeneity in the number of mitigation measures reported (Fig. 1D, fig. S7, and tables S5 and S7), with households in South Dakota reporting the least (mean, 4.6; IQR, 2 to 7) and households in Vermont reporting the most (mean, 8.9; IQR, 8 to 11).
We find a dose-response relationship with the number of mitigation measures implemented and the risk of COVID-19 outcomes among adult household members responding to the survey after adjustment for individual- and county-level factors. On average, each measure implemented is associated with a 9% decrease in the odds of CLI (aOR, 0.91; 95% CI, 0.89 to 0.92), an 8% decrease in the odds of loss of taste or smell (aOR, 0.92; 95% CI, 0.91 to 0.93), and a 7% decrease in the odds of a recent positive SARS-CoV-2 test (aOR, 0.93; 95% CI, 0.92 to 0.94) (table S8). Regression treating each individual mitigation measure as having an independent effect shows that daily symptom screening is clearly associated with greater risk reductions than the average measure (Fig. 3 and table S9), with some evidence that teacher mask mandates and cancelling extracurricular activities are also associated with larger reductions than average. By contrast, closing cafeterias and playgrounds and the use of desk shields are associated with lower risk reductions (or even risk increases); however, this may reflect saturation effects because these are typically reported along with a high number of other measures. Notably, part-time in-person schooling is not associated with a decrease in the risk of COVID-19тАУrelated outcomes compared with full-time in-person schooling after accounting for other mitigation measures. Despite this heterogeneity in impact, we find that models including only the number of mitigation measures approximate well those where measures are modeled individually (fig. S8).