Superconducting spin qubit
To date, the most promising solid-state approaches for developing quantum information-processing systems have been based on the circulating supercurrents of superconducting circuits and manipulating the spin properties of electrons in semiconductor quantum dots. Hays et al. combined the desirable aspects of both approaches, the scalability of the superconducting circuits and the compact footprint of the quantum dots, to design and fabricate a superconducting spin qubit (see the Perspective by Wendin and Shumeiko). This so-called Andreev spin qubit provides the opportunity to develop a new quantum information processing platform.
Science, abf0345, this issue p. 430; see also abk0929, p. 390
Abstract
Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuitтАУquantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time TS = 17 microseconds and a spin coherence time T2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.