24 x 7 World News

HereтАЩs the James Webb telescopeтАЩs first direct image of an exoplanet

0

This is the first picture of an exoplanet from the James Webb Space Telescope.

тАЬWeтАЩre actually measuring photons from the atmosphere of the planet itself,тАЭ says astronomer Sasha Hinkley of the University of Exeter in England. Seeing those particles of light, тАЬto me, thatтАЩs very exciting.тАЭ

The planet is about seven times the mass of Jupiter and lies more than 100 times farther from its star than Earth sits from the sun, direct observations of exoplanet HIP 65426 b show. ItтАЩs also young, about 10 million or 20 million years old, compared with the more than 4-billion-year-old Earth, Hinkley and colleagues report in a study submitted August 31 at arXiv.org.

Those three features тАФ size, distance and youth тАФ made HIP 65426 b relatively easy to see, and so a good planet to test JWSTтАЩs observing abilities. And the telescope has once again surpassed astronomersтАЩ expectations (SN: 7/11/22).

тАЬWeтАЩve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,тАЭ says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.

Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescopeтАЩs view.

To see a planet directly, astronomers have to block out the light from its star and let the planetтАЩs own light shine, a tricky process. ItтАЩs been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).

тАЬIn every area of exoplanet discovery, nature has been very generous,тАЭ says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. тАЬThis is the one area where nature didnтАЩt really come through.тАЭ

In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it canтАЩt see all the light coming from the exoplanet. EarthтАЩs atmosphere absorbs a lot of the planetтАЩs infrared wavelengths тАФ exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.

тАЬThese are wavelengths of light that weтАЩve never ever seen exoplanets in before,тАЭ Hinkley says. тАЬIтАЩve literally been waiting for this day for six years. It feels amazing.тАЭ

Pictures in these wavelengths will help reveal how planets formed and what their atmospheres are made of.

тАЬDirect imaging is our future,тАЭ Seager says. тАЬItтАЩs amazing to see the Webb performing so well.тАЭ

While the team has not yet studied the atmosphere of HIP 65426 b in detail, it did report the first spectrum тАФ a measurement of light in a range of wavelengths тАФ of an object orbiting a different star. The spectrum allows a deeper look into the objectтАЩs chemistry and atmosphere, astronomer Brittany Miles of UC Santa Cruz and colleagues reported September 1 at arXiv.org.

That object is called VHS 1256 b. ItтАЩs as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).

тАЬThis is probably a violent and turbulent atmosphere that is filled with clouds,тАЭ Hinkley says.

HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. TheyтАЩre more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars.

тАЬWhat weтАЩd like to do is get down to study Earths, wouldnтАЩt we? WeтАЩd really like to get that first image of an Earth orbiting another star,тАЭ Hinkley says. ThatтАЩs probably out of JWSTтАЩs reach тАФ Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on.┬а

Leave a Reply